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Abstract

The effect of joint administration of imipramine (IMI) and magnesium (Mg) on antidepressant-like activity was studied in mice using

forced swim test (FST). Mg doses ineffective per se (5 and 10 mg/kg) given jointly with IMI also at ineffective doses (10 and 15 mg/kg)

resulted in a potent reduction in the immobility time. Since these combined treatments did not influence locomotor activity, the

antidepressant-like activity was not due to non-specific behavioral activation. Moreover, we estimated the effect of joint administration of

magnesium and IMI in FST on serum and brain magnesium, IMI and its active metabolite desipramine (DMI) concentrations in mice. Swim

stress (mice subjected to FST) increased the magnesium concentration in serum and decreased it in the brain compared to naive animals.

Moreover administration of IMI increased (normalized) magnesium brain concentration, without influence on the serum level. Joint

administration of IMI and magnesium did not influence magnesium (compared with FST) or IMI and DMI (compared with IMI treatment

alone) concentrations in both examined tissues.

The present data demonstrated an enhancement of the antidepressant-like effect by joint administration of IMI and magnesium in the FST,

and further indicate the particular role of magnesium in the antidepressant action. Since there was no increase in IMI, DMI or magnesium

concentration after joint administration of magnesium and IMI, the data suggest that pharmacodynamic rather than pharmacokinetic

interaction between magnesium and IMI is accountable for behavioral effect in the FST.
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1. Introduction

Magnesium (Mg) is an important intracellular bioele-

ment, which activates about 300 different enzymes (Ryan,

1991). It is responsible for metabolism of ATP providing

energy for muscles, is essential for biosynthesis and

maintenance of nucleic acids’ structure, and is also

necessary for protein synthesis (e.g., Grubbs and Maguire,
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1987; Vermon, 1998). Magnesium plays an important role

in signal transmission in the central nervous system (CNS)

where it acts as the NMDA receptor antagonist. Magnesium

blocks the activation of NMDA receptor ion channel in a

voltage-dependent manner (Burnashev et al., 1992; Mori et

al., 1992; Sobolevskii and Khodorov, 2002). Disturbances

of magnesium metabolism are now considered to contribute

to many disorders. Symptoms and signs of hypomagnesae-

mia usually occur when serum total magnesium levels fall

below 0.5 mmol/l (i.e., 1.215 mg/100 ml), and frequently

ventricular arrhythmias torsades de pointes, convulsions,

neuromuscular hyperexcitability, apathy, muscle cramp and

increased stress susceptibility were observed (Fawcett et al.,

1999; Iannello and Belfiore, 2001; Johnson, 2001; Morris,

1992; Saris et al., 2000). Moreover, deficiency of magne-

sium ions has been related to affective disorders (Hall and

Joffe, 1973; Kirov et al., 1994; Linder et al., 1989; Pavlinac

et al., 1979). An association between low serum magnesium

levels and depressive symptoms was shown (Frazer et al.,

1983; Hasey et al., 1993; Kamei et al., 1998; Widmer et al.,

1992).

In animals magnesium deficiency leads to a reduction in

offensive and to an increase in defensive behavior (Kantak,

1988). Moreover, magnesium administration reduces immo-

bility time in the forced swim test (FST) in mice

(Decollogne et al., 1997; Poleszak et al., 2004), which

suggests potential antidepressant activity in humans.

In the present study we investigated the antidepressant-

like effects of combined treatment of imipramine (IMI) and

magnesium in the FST in mice and evaluated the potential

pharmacokinetic interaction between these two agents by

examining brain and serum concentrations of magnesium,

IMI and its active metabolite desipramine.
2. Experimental procedures

2.1. Animals

All procedures were approved by the Ethical Committee

of the Medical Academy, Lublin and Institute of Pharmacol-

ogy Polish Academy of Sciences, Krakow. The experiments

were carried out on male Albino Swiss mice (25–30 g). The

animals were kept on a natural day–night cycle with free

access to food and water.

2.2. Drug administration

Magnesium salt [chloride (Fluka, Poznań, Poland),

sulfate (Fluka), hydroaspartate (Farmapol, Poznań, Poland)]

alone or in a combined treatment with imipramine, were

administered intraperitoneally (i.p.) 0.5 h before the test.

Imipramine (Polfa, Kraków, Poland) was administered 1 h

before the test. Control animals received an i.p. injection of

saline (vehicle). All vehicle and drug solutions were

administered at a volume of 10 ml/kg.
2.3. Forced swim test

The studies were carried out on mice according to the

method of Porsolt et al. (1977). Mice were placed

individually into glass cylinders (height 25 cm, diameter

10 cm) containing 10 cm of water, maintained at 23–25 -C.
The animals were left in the cylinder for 6 min. After the

first 2 min the total duration of immobility was measured

during a 4-min test. The mouse was judged to be immobile

when it remained floating passively, performing slow

motion to keep head above the water.

2.4. Locomotor activity

Locomotor activity of mice was measured with photo-

resistor actometers (circular cages, diameter 25 cm, two

light beams). The animals were placed individually in an

actometer for 10 min. Activity was measured at 5-min

intervals to characterize dynamics of changes. The number

of light beams crossed by the mice was recorded as the

locomotor activity.

2.5. Imipramine and desipramine determination

Serum and brain concentrations of imipramine and its

metabolite desipramine were assayed by HPLC according to

the method described by Szymura-Oleksiak et al. (2001)

with a slight modification. After pretreatment and FST

animals were sacrificed, brains removed and frozen on dry

ice. Serum was isolated by centrifugation at 5000�g for 10

min at 4 -C, 1 h after collection and coagulation of trunk

blood, then frozen at �20 -C. The brains were homogen-

ized in 0.1 M phosphate buffered saline (PBS, 1:4 w/v) and

0.2 ml of serum (diluted 1:1 with bidistilled water) or 1 ml

of brain homogenate containing both compounds were

mixed with mianserin as an internal standard (20 Al of 0.4
Ag/ml or 2 Ag/g in methanol for serum and brain,

respectively). The samples were alkalized with 2 M sodium

hydroxide and extracted with 5 ml of ethyl acetate–hexan–

isoamyl alcohol (50:49:1 v/v). After centrifugation (30 min,

1800�g), the organic layer was transferred to a new tube,

then evaporated to dryness at 37 -C under a gentle stream of

nitrogen. The residue was dissolved in 100 Al of mobile

phase, and 50 Al of this solution were injected into the

HPLC system.

The HPLC system (Thermo Separation Products, San

Jose, CA, USA) consisted of a P100 isocratic pump, a

Rheodyne 7125 injector (Rheodyne, Cotati, CA, USA) with

a 50-Al sample loop, a UV100 variable-wavelength UV/VIS

detector, operating at 254 nm and a SP4400 (ChromJet)

integrator. All analyses were performed at ambient temper-

ature on a 250 mm�4.6 mm Supelcosil LC PCN column

(Supelco Inc., Bellefonte, PA, USA) with 5 Am particles,

protected with a guard-column (20 mm�4.6 mm) with the

same packing material. The mobile phase was 50 mM

potassium dihydrogen phosphate, pH 4.5: acetonitrile



Table 1

The effects of joint administration of imipramine (IMI) and magnesium

(Mg) on the total duration of immobility in the forced swim test in mice

Treatment Dose (mg/kg) Immobility time (s)

A. Vehicle+Vehicle – 191.2T6.5

IMI+Vehicle 30 131.8T16.09**
IMI+Vehicle 15 156.5T17.89

B. Vehicle+Vehicle – 169.0T4.8

IMI+Magnesium chloride IMI 15+Mg 10 116.9T18.65**

IMI+Magnesium chloride IMI 15+Mg 5 123.5T7.62**
IMI+Magnesium chloride IMI 10+Mg 10 113.3T11.8**

IMI+Magnesium chloride IMI 10+Mg 5 129.5T10.10*

IMI+Magnesium chloride IMI 5+Mg 10 147.8T12.44

IMI+Magnesium chloride IMI 5+Mg 5 183.5T6.7
C. Vehicle+Vehicle – 190.7T3.36

IMI+Magnesium sulfate IMI 15+Mg 10 127.7T14.91**

D. Vehicle+Vehicle – 142.9T6.08
IMI+Magnesium hydroaspartate IMI 15+Mg 10 99.13T6.03**

Magnesium (chloride, sulfate, hydroaspartate) and IMI were administered

i.p. 0.5 h and 1 h, respectively, before the test. The values represent

meansTS.E.M. (n =6–23 mice per group). ANOVA: F(2,25)=5.796,

P=0.009 (experiment A); F(6,64)=8.15, P <0.0001 (experiment B); t-test

T(14)=4.125, P <0.01 (experiment C) and t-test: T(18)=5.111, P <0.01

(experiment D). *P <0.05, **P <0.01 versus the control vehicle-treated

group.

Table 2

The effects of magnesium (Mg) and its joint administration with imipr-

amine (IMI) on spontaneous locomotor activity in mice

Treatment Dose, mg/kg Activity counts

5 min 10 min

Vehicle+Vehicle 82.9T4.8 126.0T9.9

IMI+Mg chloride IMI 15+Mg 5 109.3T12.3 147.3T19.1
IMI+Mg chloride IMI 10+Mg 10 65.6T9.8 94.5T12.2

IMI+Mg chloride IMI 10+Mg 5 88.5T5.42 114.4T11.6

Vehicle+Vehicle 88.4T4.9 134.6T5.5
IMI+Mg hydroaspartate IMI 15+Mg 10 91.9T5.6 118.2T10.1

Magnesium and IMI were administered i.p. 0.5 h and 1 h, respectively,

before the test. The values represent meansTS.E.M. (n =8 mice per group).

ANOVA: F(3,28)=4.331, P <0.01; t-test: T(14)=0.4704 for 5 min counts

and F(3,28)=4.373, P <0.01; t-test: T(14)=1.426 for 10 min counts.
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(57:43 v/v) at a flow rate of 1.0 ml/min. Desipramine

hydrochloride (DMI) were purchased from Sigma-Aldrich

(St. Louis, MO, USA), mianserin hydrochloride (MS) was a

gift from Organon (Oss, The Netherlands), imipramine

hydrochloride (IMI) from Polfa (Poland). All HPLC

solvents and reagents were obtained from Merck (Darm-

stadt, Germany).

Under these conditions, the approximate retention times

(min) were: MS—12.11, DMI—13.26, and IMI—15.06.

The calibration curves were linear in the tested IMI and

DMI concentration ranges, i.e., from 0.05 to 0.5 Ag/ml for

serum and from 0.1 to 6 Ag/g for brain homogenate. The

assay was reproducible with low intra- and inter-day

variation (coefficient of variation less than 10%) and the

recovery of both compounds ranged from 80% to 90% for

serum and from 60% to 70% for brain homogenate.

2.6. Determination of serum magnesium concentration

Total magnesium concentration in blood serum and the

whole brain was determined by xylidyl blue method

(Hulanicki, 1993). After pretreatment and FST animals

were sacrificed, brains removed and frozen on dry ice.

Serum was isolated by centrifugation at 5000�g for 10 min

at 4 -C, 1 h after collection and coagulation of trunk blood,

then frozen at �20 -C. A week later the brains were

homogenized (Heidolph DIAX 900 homogenizer, Austria)

in four volumes of ice-cold 0.01 M Tris–HCl buffer, pH 7.4

at 26,000 rev/min for 3 min and centrifuged at 21,000�g for

30 min at 4 -C. Ten microliters of thawed serum or brain

supernatant was added to 1 ml of the commercially available

reagent (Liquick Cor-Mg 30, Cormay, Lublin, Poland) and

the absorbance of the solution was read at 520 nm in a
spectrophotometer (Specord M40, Carl Zeiss Jena, Ger-

many). The magnesium concentrations were calculated

either as mg/100 ml (serum) or Ag/g of fresh tissue (brain).

2.7. Statistics

Obtained data were evaluated by the one-way analysis of

variance (ANOVA), followed by Dunnett’s or Student–

Neuman–Keuls post hoc test. All results are presented as

meansTS.E.M. P <0.05 was considered as statistically

significant.
3. Results

3.1. Behavioral studies

The effects of combined administration of IMI and

magnesium (Mg) on total duration of immobility in mice are

shown in Table 1. IMI administered alone at the dose of 30

mg/kg reduced the immobility time in mice but at the dose

of 15 mg/kg, it had no significant effect in the FST. The

following doses of IMI/Mg in mg/kg: 15/10, 15/5, 10/10,

10/5 induced statistically significant reduction of the

immobility time in mice. The following combinations of

IMI/Mg: 5/10 and 5/5 mg/kg were ineffective in this test.

The effects of magnesium and combined administration

of IMI and Mg on spontaneous locomotor activity in mice

are shown in Table 2. Combined administration of IMI/Mg:

15/5, 10/10, 10/5 or 15/10 mg/kg had no effect on

locomotor activity in mice.

3.2. Biochemical studies

Effects of combined administration of magnesium and

IMI on serum and brain magnesium concentrations in mice

subjected to FST are shown in Table 3. Swim stress (mice

subjected to FST) increased the magnesium concentration in

serum and decreased it in brain compared to naı̈ve animals.

Moreover, administration of IMI increased (normalized) the

concentration of magnesium in the brain without the



Table 3

The effect of joint administration of magnesium (Mg) and imipramine (IMI)

on serum and brain Mg concentrations in mice subjected to the forced swim

test (FST)

Treatment Mg concentration

Serum (mg/100 ml) Brain (Ag/g)

Naive 2.8T0.1 129.1T5.1
VEH+VEH+FST 3.2T0.2a 107.5T2.6a

VEH+Mg+FST 3.5T0.1 112.6T4.8

IMI+VEH+FST 3.5T0.2 125.8T3.7b

Mg+IMI+FST 3.7T0.2 110.6T6.0

Magnesium hydroaspartate (10 mgMg/kg) and IMI (15 mg/kg) were

administered i.p. 0.5 h and 1 h, respectively, before the FST. Immediately

after the FST animals were sacrificed, serum collected, brain removed and

frozen on dry ice. The values represent meansTS.E.M. (n =5–6 mice per

group). ANOVA revealed F(4,22)=7.367, P=0.0006 for serum and

F(4,23)=4.402, P=0.0087 for brain Mg concentrations. VEH—vehicle.
a P <0.05 vs. naive group.
b P <0.05 vs. VEH+FST group (Student–Newman–Keuls test).
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influence on the serum level. Joint administration of IMI

and magnesium did not influence magnesium (compared

with FST) concentrations in both examined tissues.

Effects of combined administration of magnesium and

IMI on serum and brain IMI and DMI concentrations in

mice subjected to FST are shown in Table 4. Co-

administration of IMI with magnesium did not influence

IMI and DMI (compared with IMI treatment alone)

concentrations in either brain or serum.
Table 4

The effect of joint administration of magnesium (Mg) and imipramine (IMI)

on serum and brain IMI and desipramine (DMI) concentrations in mice

subjected to forced swim test (FST)

IMI+VEH+FST IMI+Mg+FST

Serum (lg/ml)
IMI 0.15T0.04 0.15T0.02

DMI 0.05T0.006 0.04T0.003

Brain (lg/g)
IMI 3.35T1.17 3.82T0.77

DMI 0.29T0.04 0.29T0.03

Magnesium hydroaspartate (10 mgMg/kg) and IMI (15 mg/kg) were

administered i.p. 0.5 h and 1 h, respectively, before the FST. Immediately

after the FST animals were sacrificed, serum collected, brains removed and

frozen on dry ice. The values represent meansTS.E.M. (n =6 mice per

group).
4. Discussion

Depressive disorders are nowadays one of the most

disabling medical illnesses. Antidepressant therapy includes

drugs with a diversity of pharmacological mechanisms. The

non-selective inhibitors of biogenic amine reuptake have

been the mainstays for the treatment of depression (Hollister

and Csernansky, 1990). Currently, several new classes of

antidepressants are available, which act as selective biogenic

amine reuptake inhibitors (Stahl, 1997). Unfortunately,

commonly used antidepressant therapy is effective in only

60–70% of patients and produces a variety of unwanted side

effects (Hollister and Csernansky, 1990). Thus, the search for

new more effective therapeutic strategies has been in

progress. Behavioral and neurochemical data have related

NMDA-mediated neurotransmission with depression

(Nowak et al., 1993, 1995, 1998; Paul et al., 1994; Skolnick

et al., 1996; Skolnick, 1999; Skolnick et al., 2001; Trullas

and Skolnick, 1990). Functional antagonists of the NMDA

receptor complex act as antidepressants in a variety of screen

tests and animal models of depression (Maj et al., 1992a;

Layer et al., 1995; Papp and Moryl, 1994, 1996; Skolnick et

al., 1996; Trullas and Skolnick, 1990). Furthermore,

combined administration of NMDA antagonists with anti-

depressants shows a synergistic action (Maj et al., 1992b).

Thus, antidepressant-like properties of NMDA receptor

ligands suggest the involvement of the glutamatergic system
in the mechanism of the antidepressant action (Pilc et al.,

2002).

Likewise organic antagonists of the NMDA receptor

complex, inorganic magnesium, another inhibitor of NMDA

receptor function (Novak et al., 1984) is also involved in the

pathophysiology and treatment of depression. Data from

both experimental and epidemiological studies suggest that

disturbances in magnesium metabolism have been reported

in affective disorders (Hashizume and Mori, 1990; Murck,

2002). Several clinical studies have shown a decrease in

magnesium concentration in blood of depressed patients

(Frizel et al., 1969; Rasmussen et al., 1989; Widmer et al.,

1995; Zięba et al., 2000). In animals, magnesium deficiency

leads to a reduction in offensive and an increase in defensive

behavior (Kantak, 1988). However, it was also described

that mice with low erythrocyte levels of this ion showed a

more restless behavior and a more aggressive behavior

under stressful conditions (Henrotte et al., 1997). Moreover,

it was shown that magnesium exhibits an antidepressant-like

effect in the forced swim test (FST) in mice (Decollogne et

al., 1997; Poleszak et al., 2004). Zinc, another inhibitor of

the NMDA receptors (Harrison and Gibbson, 1994; Prasad,

1993), is active in animal tests and models of depression and

enhanced the antidepressant-like activity of antidepressants

in FST (Kroczka et al., 2000, 2001; Nowak et al., 2003;

Szewczyk et al., 2002). The antidepressant activity of zinc

was observed also in the clinical studies (Nowak et al.,

2003). A lower zinc serum concentration was demonstrated

in depressed patients, which was normalized after successful

antidepressant therapy (Maes et al., 1997; Nowak et al.,

1993, 1999; Nowak and Szewczyk, 2002).

In the present study, we observed the enhancement of

antidepressant-like activity by joint administration of IMI

and magnesium in the FST. Magnesium, ineffective per se,

given jointly with IMI at ineffective doses resulted in a

potent reduction in the immobility time. Since, these joint

magnesium and IMI treatments did not influence locomotor

activity, the results indicate a specific enhancement of

antidepressant-like activity by such combined treatment.
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The enhancement of this effect following combined treat-

ment with these agents may have either a pharmacodymanic

or pharmacokinetic basis. To examine the pharmacokinetic

interaction, in the present study we measured the brain and

serum concentrations of magnesium, IMI and its metabolite

DMI in mice treated with joint administration of magnesium

and IMI in FST. It is generally known that the concentration

of magnesium within the brain is a highly regulated process.

Its concentration in the cerebrospinal fluid is higher than

that in plasma, pointing to the existence of active transport

systems between both compartments (Morris, 1992; Oppelt

et al., 1963). While prolonged magnesium administration

resulted in only small changes in the cerebrospinal fluid

concentration of this bioelement, a chronic dietary magne-

sium deficit leads to the proportional changes in the

cerebrospinal fluid and brain cellular magnesium (Kemeny

et al., 1961; Schain, 1964).

In the present study we have demonstrated that mice

subjected to FST exhibited higher magnesium concentration

in serum, and lower in the brain compared to naive animals.

Thus, it could be speculated that stress caused redistribution

of magnesium from brain to peripheral tissue (serum).

Interestingly, administration of IMI increased (normalized)

concentration of this ion in the brain, without influence on

the serum level. Joint administration of IMI and magnesium

did not influence magnesium concentration (compared to

FST). Similarly, this combined treatment did not affect IMI

or DMI concentrations in both examined tissues (compared

with IMI treatment alone). Therefore, probably pharmaco-

dynamic interaction rather than kinetic changes are likely

responsible for the behavioral effect of the combined

magnesium and IMI treatment.

The present data demonstrated that joint administration

of IMI and magnesium produced an enhancement of the

antidepressant-like effect in the FST, and further indicated

the particular role of magnesium in the antidepressant

action. Since there was no increase in IMI, DMI or

magnesium concentration after joint administration of

magnesium and IMI, the data suggest that pharmacody-

namic rather than pharmacokinetic interaction between

magnesium and IMI is accountable for behavioral enhance-

ment in the FST.
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